‘Smart’ Machine Components Alert Users to Damage and Wear

Sameh Dardona, center, principal research engineer and associate director, United Technologies Research Center, with Anson Ma, associate professor of chemical and biomolecular engineering, right, and Alan Shen, a Ph.D. student, look at a prototype wear sensor at the UTC Research Center in East Hartford. (Peter Morenus/UConn Photo)arc

Scientists at the United Technologies Research Center and UConn are using advanced additive manufacturing technology to create ‘smart’ machine components that alert users when they are damaged or worn.

The researchers also applied a variation of the technology to create polymer-bonded magnets with intricate geometries and arbitrary shapes, opening up new possibilities for manufacturing and product design.

The key to both innovations is the use of an advanced form of 3D printing called direct write technology. Unlike conventional additive manufacturing, which uses lasers to fuse layers of fine metal powder into a solid object, direct write technology uses semisolid metal ‘ink’ that is extruded from a nozzle. The viscosity of the metal ink looks like toothpaste being squeezed from a tube. Read the full UConn Today story.