IMS Faculty Members Awarded Internal Funding

The Office of the Vice President for Research (OVPR) offers internal funding for faculty projects that are at critical stages of development.  This funding is provided to serve as high-leverage, strategic investment in outstanding faculty research projects.  The Institute of Materials Science is proud to announce our faculty members who have received internal funding for the 2022-2023 academic year.  We congratulate each of our faculty on their research accomplishments.

Scholarship Facilitation Fund

SFF Fund Awardees
Left to right: Drs. Menka Jain; Ying Li, Na Li, Xiuling Lu, and Helena Silva

Menka Jain, Physics
Workshop: Quantum Matter: Dynamics and Sensor

Ying Li, Mechanical Engineering
Publication in Science Advances, a Premium Open-access Journal for Maximum Impact

Na Li, Pharmaceutical Science
Open access publication: Mechanisms and extent of enhanced passive permeation by colloidal drug particles

Xiuling Lu, Pharmaceutical Science
Imaging Tumor Heterogeneity and the Variations in Nanoparticle Accumulation using Perfluorooctyl Bromide Nanocapsule X-ray Computed Tomography Contrast

Helena Silva, Electrical and Computer Engineering
Circuit Simulation of an Erasable Physical Unclonable Function using a Phase-Change Memory Array

Research Excellence Program

REP Awardees
left to right: Drs. Kelly Burke, Bodhisattwa Chaudhuri, Jie He, Menka Jain, Seok-Woo Lee, James Rusling, Tannin Schmidt, Yi Zhang

Kelly Burke, Chemical and Biomolecular Engineering- $25,000
Implantable Degradable Films for Right-Size Post-Operative Pediatric Pain Control

Bodhisattwa Chaudhuri, Pharmaceutical Science- $49,998.08
Continuous manufacturing (CM) of the biological drug product for pulmonary drug delivery
Co-PIs: Yu Lei, Chemical and Biomolecular Engineering; Yanchao Luo, Nutritional Sciences; Matthew Stuber, Chemical and Biomolecular Engineering

Jie He, Chemistry- $50,363.63
C-H Bond Electroactivation of Nonpolar Organic Substrates in Water: Enzyme-Mediated Reaction Pathways in Microemulsions
Co-PIs: James Rusling, Chemistry

Menka Jain, Physics- $50,000
New approaches for on-chip cooling for applications in electronics and quantum devices
Co-PIs: Ilya Sochnikov, Physics

Seok Woo Lee, Material Science and Engineering- $25,000
Investigation on cryogenic shape memory effects of kinetically frozen ThCr2Si2-structured intermetallic compounds

James Rusling, Chemistry- $50,000
Rapid CRISPR-based blood test for early Alzheimer’s disease
Co-PIs: Breno Diniz, Uconn Health, Center for Aging; Islam Mosa, Chemistry

Tannin Schmidt, Biomedical Engineering- $74,853
Role of Proteoglycan 4 (PRG4) in Inflammatory Bone Loss
Co-PIs: Sun-Kyeong Lee, Medicine; Joseph Lorenzo, Medicine; Kshitiz Gupta, UCHC Biomedical Engineering; Alix Deymier, Biomedical Engineering

Yi Zhang, Biomedical Engineering- $49,863.63
A wireless, battery-free multimodal neural probe for simultaneous neuropharmacology and membrane-free neurochemical sampling in freely moving rodents
Co-PIs: Alexander Jackson, Physiology & Neurobiology; John Salamone, Psychological Sciences; Xudong Yao, Chemistry

Department of Energy Early Career Award Recipient Yuanyuan Zhu

Yuanyuan Zhu
Dr. Yuanyuan Zhu is the only Connecticut recipient of the DOE Early Career Award for 2022.

Established in 2010, the DOE Office of Science Early Career Research Program supports the individual research programs of outstanding scientists early in their careers and stimulates research careers in the disciplines supported by the DOE Office of Science: Advanced Scientific Computing Research (ASCR), Biological and Environmental Research (BER), Basic Energy Sciences (BES), Fusion Energy Sciences (FES), High Energy Physics (HEP), Isotope R&D and Production (IP), and Nuclear Physics (NP).

Among the 83 university and DOE national lab researchers announced as recipients of the award for 2022, Assistant Professor of Materials Science and Engineering Yuanyuan Zhu is the only Connecticut researcher to receive the honor.  IMS News asked Dr. Zhu about her research and the award.

In 2019, you were appointed Director of the UConn DENSsolutions InToEM Center for in-situ TEM research at IPB Tech Park.  You have since had papers published related to the research the Center is conducting.  As we are seeing more and more evidence of the effects of climate change, how do you hope your research at the InToEM Center will assist in solving some of the problems we are now dealing with?

Yes, we have published a couple of papers since 2019 using the in-situ environmental TEM gas cell. Here you can find our full publications: .

It’s a coincidence that the DENSsolutions’ ETEM gas cell system is named as “Climate”, because it involves gas environment for chemical reactions in a microscope. Another example is their liquid cell system, which is called “Stream” simply because the reaction stimuli involved.

There are many materials researches related to energy and environment, including climate change, that can benefit from the in-situ ETEM research. One immediate example is heterogeneous catalysis used for natural gas conversion and H2 production. And the fusion energy materials research funded by the DOE ECA is another good example.

Congratulations on receiving the Department of Energy’s Early Career Award for 2022.  What are your hopes for your research on Understanding Thermal Oxidation of Tungsten and the Impact to Radiation Under Fusion Extremes?

Fusion energy holds great promise for replacing fossil fuels for 24/7 baseload electrical power. We are excited that the DOE Early Career Award will fund our in-situ ETEM study to directly address a well-known fusion safety hazard concerning aggressive high-temperature oxidation of plasma-facing material tungsten. We hope to gain fundamental understanding of tungsten degradation in case of air-ingress scenarios that could inform the best strategy for responding to accidents, and could guide the design of advanced W-based materials that better preserve divertor integrity for even more demanding DEMO fusion extremes. Simply put it, we want to make the operation of fusion energy systems safer and more reliable.

You have several Ph.D. candidates under your advisement.  How do you hope to influence these young scientists?

Our research group provides a welcoming, supportive and inclusive working environment to drive personal success for each Ph.D. researcher. Through the first-hand work on such research projects closely to clean energy and sustainability, I believe our Ph.D. students will gain confidence and skills in research and also develop a solid sense of social responsibility.

We are seeing many more women represented in STEM.  What advice would you give to young women who may be considering a career in science, technology, engineering and mathematics?

We need everyone in STEM, and anything is possible if one follows his/her/their passion. Research is fun but progress is built on failure and resilience.


Four IMS Faculty Members Receive OVPR Scholarship Facilitation Award

Scholarship Facilitation Award Winners
(l-r) Drs. Farhad Imani, Jasna Jankovic, Tomoyasu Mani, and Luyi Sun

The Scholarship Facilitation Fund program provides up to $2,000 to UConn faculty across all disciplines. The OVPR offers the competitive awards to promote, support, and enhance research, scholarship, and creative endeavors across UConn Storrs and regional campuses.

Four IMS faculty members were among the 67 faculty named as recipient of the award for Spring 2022:

  • Farhad Imani, Mechanical Engineering
    Brain-inspired Hyperdimensional Computing for Empowering Cognitive Additive Manufacturing
  • Jasna Jankovic, Material Science and Engineering
    STEAM Tree Earth Day Celebration
  • Tomoyasu Mani, Chemistry
    Stereoselective Control of Electron Transfer Reactions
  • Luyi Sun, Chemical and Biomolecular Engineering
    Publication in PNAS, a Premium Journal for Maximum Impact

IMS Congratulates these faculty members on this accomplishment.

Xueju “Sophie” Wang Receives NSF CAREER Award

Xueju "Sophie" WangMSE Assistant Professor Xueju “Sophie” Wang has been awarded the NSF Faculty Early Development Program CAREER Award for her proposal entitled “Mechanics of Active Polymers and Morphing structures: Determine the Role of Molecular Interactions and Stiffness Heterogeneity in Reversible Shape Morphing.” It is one of NSF’s most prestigious awards.

Wang’s NSF CAREER award will support her research on fundamental studies of the mechanics of innovative active polymers and morphing structures. Soft active polymers that can change their shapes and therefore functionalities upon exposure to external stimuli are promising for many applications, including soft robotics, artificial muscles and tissue repair. This research project aims to establish the missing correlations across the molecular, material and structural levels of novel active polymers for their rational design, manufacturing and applications, by using liquid crystal elastomers as a model material system.

“I am very grateful and honored to receive this prestigious award, and I look forward to working with my students to address challenges in innovative active polymers and to apply them in emerging fields like soft robotics,” Wang said.

Read the full Department of Materials Science and Engineering Story

IMS Faculty Members Receive Department of Education GAANN Award

Drs. Bryan Huey and Lesley Frame
Drs. Bryan Huey (l) and Lesley Frame

Drs. Bryan Huey (IMS/MSE) and Lesley Frame (IMS/MSE) are recent recipients of the Department of Education (ED) Graduate Assistance in Areas of National Need (GAANN) grant.

Drs. Huey and Frame collaboratively applied for the award which provides fellowships, through academic departments and programs, to assist graduate students with excellent records who demonstrate financial need and plan to pursue the highest degree available in their course study at the institution in a field designated as an area of national need.

Their Careers in Advanced Materials Engineering Research and Academia (CAMERA) GAANN program will provide world-class educational, research, advising, and professional training experiences and opportunities, beyond MSE courses and laboratory research taught by established experts in a range of materials engineering specialties. They will utilize the funding to support five Ph.D. fellowships focusing on increasing the number of highly trained Ph.D. scholars from populations traditionally underrepresented in STEM.

Drs. Huey and Frame plan to provide primary and secondary faculty advisors for candidates selected for the fellowship. Each Fellow will earn credits through a novel ‘Academia Lab’ created by MSE in conjunction with the school of engineering and the UConn Center for Excellence in Teaching and Learning in order to incorporate instruction and workshops in educational pedagogy and practice, scientific writing and presenting, and mentorship skills.

The grant of ~$760K will be supplemented by funding from the School of Engineering, the Office of the Vice President for Research, the Office of the Provost, and The Graduate School.

Research Project Aims to Eradicate Use of Harmful Gas

Yang CaoThe gas sulfur hexafluoride (SF6) has been keeping our electrical grid safe from dangerous arcing and explosions since its introduction to the public in the 1930s. Developed in a General Electric lab, sulfur hexafluoride is one of the most widely used insulation gases by electrical utility companies because of its reliability and safety, but remains relatively unknown by the general public.

Starting in the 1960s, as greenhouse gases and their effect on the environment became more widely known, sulfur hexafluoride has been identified as one of the largest causes of global warming. While most educational and legislative efforts have been focused on CO2, or carbon dioxide, emissions as a big offender, sulfur hexafluoride has flown under the radar despite its staggering global warming potential: 25,200 times that of carbon dioxide.

Because of that, University of Connecticut Electrical and Computer Engineering Professor Yang Cao has been selected to receive $2.7 million in funding over three years from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E) to develop a lifecycle management framework, with innovations in physics based aging modeling, aging byproducts fixation, and a low-cost, high-fidelity multi-gas leak sensor with GE Research, to help utilities make a smooth transition to a new, SF6– free electrical grid.  Read the full UConn Today story.

Dr. Ying Li Receives NSF CAREER Award

Dr. Ying Li is one of eight UConn faculty members, and three IMS faculty members, to receive a National Science Foundation Career CAREER Award in 2021.  Li  will develop a machine learning model to better understand the properties of a promising sustainable material.To learn more about the award  Visit UConn Today.

Luyi Sun Awarded Spring 2016 Scholarship Facilitation Fund Award

By Rhonda Ward

Dr. Luyi Sun
Dr. Luyi Sun

Dr. Luyi Sun is the recipient of a Spring 2016 Scholarship Facilitation Fund Award from the Office of the Vice President. for Research for Publication in Nature Communications, a Premium Open-access Journal for Maximum Impact. The Office of the Vice President for Research provides financial support up to $2,000 to faculty across all disciplines, on a competitive basis, to promote, support, and enhance the research, scholarship and creative endeavors of faculty at UConn. The Scholarship Facilitation Fund (SFF) is designed to assist faculty in the initiation, completion, or advancement of research projects, scholarly activities, creative works, or interdisciplinary initiatives that are critical to advancing the faculty member’s scholarship and/or creative works.

Polymer Program Researchers Kelly Burke and Anson Ma Receive CT Regenerative Medicine Grant

By: Kelly A. Salzo

Kelly Burke (Peter Morenus/UConn Photo)

The CT Regenerative Medicine Research Fund Advisory Committee has awarded Dr. Kelly A. Burke (IMS/CBE) and Co-Investigator Anson W. K. Ma (IMS/CBE) a seed grant titled “Human intestine tissue model by 3D printing”. The grant will provide $200,000 for the research endeavor involving chemically modified silk proteins to be used for 3D printing, which will subsequently form stable hydrodels. These materials will be printed into intestine-like crypt structures and will incorporate cells from human intestine to improve understanding on how the geometry of the system alters the function of the cells. Dr. Burke is hopeful that “the data generated will not only advance our efforts in 3D printing soft materials, but will also enhance understanding of how cells interact and undergo repair processes in cultures with geometries that are more representative of the human intestine.” The applications of this research will be important to the study of intestine tissue models, which may be used to investigate disease progression and to develop therapeutics.

Anson Ma (Peter Morenus/UConn Photo)

Dr. Kelly A. Burke received her Ph.D. in Macromolecular Science and Engineering from Case Western Reserve University in 2010. In 2014, she joined UConn as an assistant professor in the Chemical and Biomolecular Engineering Department and is a member of the IMS Polymer Program. Her research interests include synthesis and structure-property relationships of multifunctional polymeric materials, stimuli responsive polymers and networks, natural and synthetic biomaterials, and the design and application of polymeric systems to modulate inflammation and promote healing.

Dr. Anson W. K. received his Ph.D. in chemical engineering from the University of Cambridge in 2009. He joined UConn in 2011 as an assistant professor in the Chemical and Biomolecular Engineering Department and the IMS Polymer Program. As Principal Investigator for the Complex Fluids Laboratory, his research centers on understanding the complex flow behavior (rheology) and processing of various complex fluids including foams, emulsions, nanoparticle suspensions, and biological fluids.