IMS Faculty Members

IMS Director Discusses Carbon Capture and Impact Mitigation

Dr. Steven L. Suib, Director of UConn’s Institute of Materials Science (IMS), is working to mitigate the effects of greenhouse gasses caused by carbon dioxide (CO2) emissions through carbon capture and conversion.  His work was recently highlighted in a UConn video.  IMS News reached out to Dr. Suib to discuss the impacts of the his research.

Carbon Capture - Gel
Dr. Suib’s research is highlighted in this video produced for UConn Today

How does carbon dioxide (CO2) negatively impact the environment and why is the research you are conducting critical to mitigating the impacts of CO2?

CO2 is a product of combustion from gas burning vehicles, industrial plants, and other sources. Enhanced levels of CO2 are believed to be responsible for global warming and the unusual patterns of weather throughout the world in recent years. We are trying to find ways to trap and gather carbon dioxide and also to transform this into materials that are less hazardous and with practical uses.

You state that CO2 must be trapped (or captured) in order to be converted.  What methodology or methodologies are used to capture CO2 emissions?

There have been many different methods suggested to capture CO2 including physical methods of trapping in porous materials as well as chemical reactions for storage.

Discovering methods of converting CO2 to harmless but useful products requires the introduction of a catalyst to convert the gas. You have conducted extensive and often-cited research in catalysis.  How does this expertise aid in your research? 

The bonds in CO2 are strong and this gas is quite stable. There are many different types of catalysts that we have made. Different reactions are often catalyzed by different catalysts. To find better catalysts they need to be synthesized. The heart of our research programs centers around synthesis of new materials. Unique new materials including catalysts may have different and beneficial properties that commercially available materials do not have.

When you use the term “harmless but useful” in describing products that can be derived from the conversion of CO2, what types of products are possible?

The objective of activating CO2 is to make products that are safe and that can be used in different applications such as new fuels, new chemical feedstocks, and others. These in turn can be used in applications involving sustainable energy, medicines and pharmaceuticals, and new conducting systems (semiconductors, superconductors, batteries, supercapacitors).

It seems we have reached a critical stage in the climate crisis with calls for more research and, above all, action to reduce greenhouse gases and their negative effects.  How urgent is the research you and your students and colleagues are conducting to the mitigation of the climate crisis?  How close is the research to producing measurable outcomes?

The field of capturing and activating CO2 is very active right now, with numerous groups around the world trying to solve problems that would allow CO2 to be eventually used in many different commercial processes. Our work involves a small set of potential materials for capture and activation of CO2. There are measurable improvements in capture and activation. The key will be to push this to the limit so practical processes can be used.

Nguyen Lab Explores Benefits of Using Microneedle Arrays for Vaccine Delivery

from UConn Today

Thanh Nguyen, center, is pictured here with members of his 2022-23 lab.
Thanh Nguyen, center, is pictured here with members of his 2022-23 lab.

In rural areas, especially in developing countries, the long distance to a medical facility may hinder a population from getting vaccinations, and especially booster doses.

Vaccines—for everything from influenza to COVID-19 to pneumococcal diseases—are stored at a low temperature for stability and are typically administrated through a hypodermic needle and syringe from a health care professional.

“What if we were able to mail people vaccines that don’t need refrigeration and they could apply them to their own skin like a bandage?” asked Thanh Nguyen, associate professor of mechanical engineering and biomedical engineering at the University of Connecticut. “And what if we could easily vaccinate people—once—where they wouldn’t need a booster? We could potentially eradicate polio, measles, rubella, and COVID-19.”

The answer, Nguyen believes, is administrating vaccines through a programmable microneedle array patch with a novel process he is developing at his lab at UConn.

By adhering a nearly painless, 1-centimeter-square biodegradable patch to the skin, a person can receive a preprogrammed delivery of highly-concentrated vaccines in powder form—over months—and eliminate the need for boosters. “The primary argument is that getting vaccines and boosters is a pain,” Nguyen said. “You have to go back two or three times to get these shots. With the microneedle platform, you put it on once, and it’s done. You have your vaccine and you have your boosters. You don’t have to go back to the doctor or hospital.” 

This month, UConn’s Institute of Materials Science received a three-year grant from the Bill & Melinda Gates Foundation to support Nguyen’s research on “Single-Administration Self-boosting Microneedle Platform for Vaccines and Therapeutics.” The project’s goal is to develop a low-cost manufacturing process.  

The Nguyen Research Group has already been working to thermally-stabilize vaccines and other therapeutics so they can stay inside the skin for a long period. In 2020, Nature Biomedical Engineeringpublished a study by Nguyen and his colleagues reporting that, in rats, microneedles loaded with a clinically available vaccine (Prevnar-13) against a bacterium provided similar immune protection as multiple bolus injections.  

“We’ve been able to show this technology is safe and effective in the small animal model, but now the question is, how do we translate it into the commercialized stage and make it useful to the end user, which is the human,” he said.  

With support from the Gates Foundation, Nguyen will be able to test his microneedle platform on a larger animal—a pig, which has skin similar to humans. And if the results are similar, Nguyen predicts this technology could be manufactured, at an affordable cost, enabling both domestic and global health impact.

Nguyen’s microneedle platform also caught the attention of the United States Department of Agriculture. In September, the USDA: Research, Education, and Economics division awarded Nguyen with a two-year grant for a study titled “Delivery of FMDV Protein Antigens Using a Programmable Transdermal Microneedle System.” 

The Foot-and-Mouth Disease Virus (FMDV) is a highly contagious disease that affects the health of livestock such as cows, pigs, sheep, and goats. When an outbreak occurs, the disease leaves affected animals weakened and unable to produce meat and milk. FMDV causes production losses and hardships for farmers and ranchers, and has serious impacts on livestock trade.

And while vaccines exist, like with humans, boosters are required to keep the vaccine effective.   

USDA is interested in the technology because the patch will be able to deliver the initial dose and subsequent doses, or boosters, to animals without the need for rounding up and handling multiple animals at once,” Nguyen explained. “This decreases stress on the animals and increases safety for the animals and their handlers.”

The microneedle platform is among the latest applications the Nguyen Research Group is exploring in the arena of vaccine/drug delivery, tissue regenerative engineering, “smart” piezoelectric materials, electronic implants, and bioelectronics. Since joining the College of Engineering in 2016, Nguyen has discovered a method of sending electric pulses through a biodegradable polymer to assist with cartilage regeneration; he’s designed a powerful biodegradable ultrasound device that could make brain cancers more treatable; and he used microneedle patches to deliver antibody therapies, which have been proven successful in treating HIV, autoimmune disorders such as multiple sclerosis, and certain types of cancer.  

Christina Tamburro, post-award grants and contracts specialist for UConn’s Institute of Materials Science said IMS is grateful to both the Gates Foundation and USDA for supporting Professor Nguyen’s drug delivery research.  

“This is a wonderful application of material science and this is what we’re all about. Ultimately, this is going to save lives and it can’t get better than that,” she said.

Xueju “Sophie” Wang Receives 2024 ONR Young Investigator Award

Xueju "Sophie" Wang
Dr. Xueju “Sophie” Wamg

Xueju “Sophie” Wang has been awarded an Office of Naval Research (ONR) 2024 Young Investigator Award in the category Ocean Battlespace Sensing.  The Ocean Battlespace Sensing Department of ONR explores science and technology in the areas of oceanographic and meteorological observations, modeling, and prediction in the battlespace environment; submarine detection and classification (anti-submarine warfare); and mine warfare applications for detecting and neutralizing mines in both the ocean and littoral environment.

One of 24 recipients in various categories, Dr. Wang’s research, entitled A Soft Intelligent Robot for Self-digging, Multi-modal Sensing, and In Situ Marine Sediment Analysis, was recognized by the Littoral Geosciences and subcategory.  The Littoral Geosciences and Optics program supports basic and applied research for expeditionary warfare, naval special warfare, mine warfare and antisubmarine warfare in shelf, near-shore, estuarine, riverine, and riparian environments, with a particular emphasis on robust 4D prediction of environmental characteristics in denied, distant or remote environments.

Dr. Wang earned a Ph.D. from Georgia Institute of Technology in 2016.  She joined the faculty of the Materials Science and Engineering Department (MSE) in 2020 with an appointment in the Institute of Materials Science (IMS).  Since then, she has earned extensive recognition for her research including the National Science Foundation (NSF) CAREER award in 2022; the National Institutes of Health (NIH) Trailblazer Award, also in 2022; and the American Society of Mechanical Engineers (ASME) Orr Early Career Award in 2021 among others.

Wang’s research focuses on soft, stimuli-responsive materials and multifunctional structures; multistability of reconfigurable, magnetically responsive structures, flexible/pressure-tolerant/bio-integrated electronics, soft robotics and intelligent systems; and in-situ/environmental operando experimental techniques.  Her research has been published extensively.

 

A Career Worth Celebrating: Dr. Challa V. Kumar

Colleagues, collaborators, family, friends, and former students gathered to celebrate the career of Dr. Challa V. Kumar
Colleagues, collaborators, family, friends, and former students gathered to celebrate the career of Dr. Challa V. Kumar

By the time registration closed for the Symposium Celebrating the Research and Education Legacy of Professor Challa V. Kumar, more than 60 delegates from around the world had registered.  The event, which also celebrated Dr. Kumar’s retirement as well as his 70th birthday, brought together colleagues, collaborators, friends, and former students of Professor Kumar eager to pay homage to him and to present research on the topic for the day, Chemical Approaches to Biological Materials and Beyond.

The full-day event opened on September 9, 2023, with continental breakfast and a welcome message from Dr. Yao Lin, professor of chemistry and Institute of Materials Science (IMS) resident faculty member. Lin also served as chair for the morning session.  IMS Director Dr. Steven L. Suib opened the symposium with remarks that set the tone for the day’s events.

The morning session commenced with Dr. Kumar’s introduction of his longtime friend, Professor and Chief Editor of Science magazine, Holden Thorp. Dr. Thorp emphasized the importance of scientists getting involved in the discussion of societal issues and policies through evidence-based facts. The discussion included science outreach to children, an important topic for all attendees.

Each presentation was preceded by a short introduction from Dr. Kumar, to which he brought a personal connection between himself and each of the presenters. Speakers for the morning session included Professor D. Ramaiah from Birla Institute of Technology, Hyderabad, India. Dr. Kumar and Dr. Ramaiah overlapped at the Indian Institute of Technology Kanpur before Dr. Kumar left for the United States.

Morning session speakers
Morning session presenters (l to r) Drs. Yao Lin (session chair); Dr. D. Ramaiah, Michael Purugganan, Leah Croucher, and J.K. Barton

Professor Michael Purugganan from New York University described his collaboration with Professor Kumar on DNA-mediated electron transfer at Columbia University. He presented research on the ways in which rice genes have co-evolved with humans over thousands of years, with 13,000 varieties identified so far.

Professor Leah Croucher from the National Institutes of Health (NIH), a former Ph.D. student of Professor Kumar, described her path from the Kumar lab to NIH in reverse chronological order, sharing highlights of her days at UConn along the way.

The last speaker of the morning session was Professor J.K. Barton of California Institute of Technology. Dr. Barton, a recipient of the prestigious Priestly Medal, spoke on electron transfer through DNA. Dr. Barton was also a postdoctoral mentor to Professor Kumar. Her talk led to interesting discussions on the electron transport mechanism and how DNA-mediated electron transport plays an important role in DNA damage, repair, and cancer.

Afternoon session symposium speakers
Afternoon Session Speakers (l to r) Drs. Steven L. Suib, James Rusling, Ashis Basu, Rajeswari Kasi, Akhilesh Bhambhani, Ajith Pattammattel, and Anna Pyle

Following lunch, session chair Dr. Rajeswari Kasi, professor of chemistry and IMS resident faculty member, commenced the afternoon session with an introduction of IMS Director and Professor of Chemistry Dr. Steven L. Suib. Professor Suib analyzed the research trajectory of Dr. Kumar over four decades and recounted how the Kumar research group switched gears and meandered through increasingly interesting research topics, building one over the other.

Professor of Chemistry James Rusling spoke about his interactions with Professor Kumar, elaborating on joint and related projects that they often chatted about. Professor of Chemistry Ashis Basu described his research projects on DNA damage, DNA-covalent adducts of carcinogens, and the mechanisms of carcinogenesis. Professor Kasi described some of her most recent work on protein-conjugated cellulose nanocrystals, demonstrating how her work was inspired by her collaborations with Dr. Kumar.  Professor Akhilesh Bhambhani, a former Ph.D. student of Dr. Kumar, outlined the key factors for successful design, manufacturing, and deployment of biologics with humorous comparison of Dr. Kumar to the Bodha tree, which gave enlightenment to those who rested beneath it. Dr. Ajith Pattammattel, another former Ph.D. student of Dr. Kumar, elaborated on his research at the Brookhaven National Laboratory. He invited students and faculty to visit the lab to conduct collaborative advanced scattering experiments with a personal story of the instrumental role Dr. Kumar played in his success.

The penultimate talk of the symposium was given by Professor Anna Pyle, a contemporary of Dr. Kumar during her days as a graduate student at Columbia

University. Dr. Pyle described how her group is deciphering the exquisite structures of multiple states of RNA using Cryoelectron microscopy.

Dr. Challa Kumar was surrounded by family for the event. (l to r) Dr. Kumar’s wife Anupam, Dr. Kumar, his brother Srinivas, sister-in-law Manjula, nephew Sriram, and his wife Keerti

With the last word, Professor Kumar began his plenary talk by thanking his mentors, hosts, and graduate students. He elaborated on the tortuous path taken by his research group, and lessons learned, along the same lines as Professor Suib’s analysis at the beginning of the afternoon session.

The symposium concluded with a standing ovation from the audience, after Dr. Kumar explained how he came to the United States with only $21 and a Ph.D., with no friends or relatives here, and succeeded in achieving his American dream.  Truly a career worth celebrating!

Watch video of the symposium here.

Dr. Cato T. Laurencin to Receive the Kathryn C. Hach Award for Entrepreneurial Success from the American Chemical Society

From UConn Today

Cato LaurencinThe American Chemical Society (ACS) has selected University of Connecticut’s Dr. Cato T. Laurencin as the 2024 recipient of its Kathryn C. Hach Award for Entrepreneurial Success.

As the national awardee, Laurencin is recognized for his use of the transforming power of chemistry to improve people’s lives. The hallmark of this contribution is impact: positive impact on people’s lives and positive impact on the economy by creating jobs that produce a significant economic benefit.

Laurencin’s innovations in regenerative engineering and his impact on the fields of biomaterials, nanotechnology, and stem cell science have had an immeasurable impact. As the leading international figure in polymeric biomaterials chemistry and engineering, he has made not only extraordinary scientific contributions, but has contributed through innovation and invention.

In Connecticut, Laurencin was the lead faculty architect for Bioscience Connecticut. Start-up companies he has founded have led to products now on the market. He received the Connecticut Medal of Technology in recognition of his work in the state.

Nationally, Laurencin is a Fellow of the National Academy of Inventors, and the first surgeon elected to all 4 of the U.S. National Academies. He serves on the board of directors of the National Academy of Inventors and on the National Academy of Inventors Selection Committee.

He received the National Medal of Technology and Innovation, America’ highest recognition for technological achievement, from the President of the United States.  In service to our nation, he serves as Vice-Chair of the National Medal of Technology and Innovation Nomination and Evaluation Committee, appointed by both the Trump and Biden administrations.

Most recently, he received the Inventor of the Year Award presented to the world’s most outstanding recent inventors from the Intellectual Property Owners Education Foundation (IPOEF). The IPOEF’s board of directors voted unanimously for him, recognizing his impact on biomaterials, nanotechnology, stem cell science, and the field of regenerative engineering.

IMS Industrial Affiliates Program Hosts 2023 Annual Meeting

2023 Annual Meeting - Morning Session
The morning session was held in the Science 1 Active Learning Classroom.

On May 25, 2023, the Institute of Materials Science (IMS) Industrial Affiliates Program (IAP) held its first in-person annual meeting since the onset of the COVID-19 pandemic in 2020.

The meeting began with a welcome message by Dr. Hatice Bodugoz-Senturk, Associate Director of the IMS Industrial Affiliates Program, followed by remarks by Dr. Steven L. Suib, Director of IMS, and Dr. Paul Nahass, Director of the IMS Industrial Affiliates Program. Dr. Bryan Huey, Department Head of Materials Science and Engineering (MSE) gave an overview of the MSE department and its achievements; and Dr. Kelly Burke, Director of the IMS Polymer Program, discussed the latest developments in polymer science.

Dr. George Matheou presents
Dr. Georgios Matheou presents his research at the morning session of the 2003 Annual Meeting

The morning session featured three presentations by IMS faculty members from different departments. Dr. James “Nate” Hohman, Assistant Professor of Chemistry, talked about his research on experimental foundations for next-generation materials and interfaces, and how he uses big science, big data, and big AI to discover new materials for various applications. Dr. Georgios Matheou, Assistant Professor of Mechanical Engineering, presented his work on predictive modeling and simulation of multi-physics flows, and how he collaborates with industry partners in renewable energy, aerospace, and health care sectors. Dr. Vahid Morovati, Assistant Professor of Civil and Environmental Engineering, explained his theoretical framework to model the long-term mechanical behavior of elastomeric materials considering damage accumulation and degradation.

The luncheon session featured a keynote address by Dr. Anne D’Alleva, Provost and Executive Vice President for Academic Affairs, who shared her vision and goals for UConn’s academic excellence and innovation. She also highlighted the importance and impact of materials science and engineering in addressing the global challenges and opportunities in the 21st century. The luncheon concluded with closing remarks by Dr. Paul Nahass.

2023 Annual Meeting Luncheon 2
IMS Director Dr. Steven L. Suib addresses industry partners, faculty, and students at the 2023 Annual Meeting Luncheon

The meeting was attended by more than 100 participants from industry affiliates and external partners along with IMS faculty, students, and alumni. The meeting also showcased the annual Joint Poster Session by IMS Polymer Program and Materials Science and Engineering (MSE) students, demonstrating their projects and achievements in materials science and engineering.  Industry partners were also given tours of core laboratories in the Science 1 building, the new home to IMS.

The IMS Industrial Affiliates Program provides materials characterization services to its industry partners. The program also facilitates collaborations between IMS faculty and students and industry partners on research projects of mutual interest.

The Institute of Materials Science is an interdisciplinary research institution that supports over 100 faculty members from 15 departments across UConn’s schools and colleges. The institute offers advanced degrees in polymer science and materials science, as well as state-of-the-art research facilities for its students and faculty to conduct research that is changing the future of materials science.

Naba Karan Wins DoD DURIP Funding

Dr. Naba Karan
Dr. Naba Karan

The U.S. Department of Defense (DoD) awarded four UConn scientists with high-profile grants to fund the acquisition of technology to bolster their research capabilities.

The highly competitive Defense University Research Instrumentation Program (DURIP), offered by the Air Force Office of Scientific Research (AFOSR), the Army Research Office (ARO), and the Office of Naval Research (ONR), funds cutting-edge research projects with potential to assist national defense.

Lithium-ion (Li-ion) batteries are one of the most common rechargeable energy storage technologies on the market. As a rule, they are quite safe under normal operating conditions, powerful, and scalable, from smartphones to electric cars. But given the number of Li-ion batteries produced around the world, their relatively small failure rate has still resulted in some high-profile stories of Li-ion batteries going into thermal runaway – an event when a battery catches fire, explodes, and releases toxic gases.

IMS member Naba Karan, an assistant research professor at the Center for Clean Energy Engineering (C2E2) in the School of Engineering, isn’t surprised.

“You can think of them as bombs,” he says, noting the high quantity of chemical energy contained within Li-ion batteries. And he’s looking to blow them up—on purpose.

With funds from the Office of Naval Research, Karan is constructing a facility at UConn that will explode the batteries in a controlled environment to determine critical safety parameters needed for designing advanced engineering protocols to mitigate thermal runaway events. In a military context, this information will help operators of machinery that depend on these high-powered batteries, such as submarines, determine when internal battery temperatures are exceeding safety thresholds. Most crucially, it will allow them to avoid catastrophic failure by diverting some of this heat.

The equipment will be able to analyze thermal characteristics of all types of energy storage technologies, not only Li-Ion batteries. Since it will be one of the only such facilities in the northeast region, Karan anticipates a high degree of interest and collaboration from other universities and companies looking into studying the safety characteristics of existing and emerging battery chemistries.

IMS Welcomes Mihai “Mishu” Duduta

Dr. Mihai Duduta
Dr. Mihai Duduta’s research has the potential to change the future of robotics.

Mihai “Mishu” Duduta has joined the Department of Mechanical Engineering with an appointment in the Institute of Materials Science (IMS).  Having earned his B.S. from MIT, he completed his M.S. and Ph.D. at Harvard University.  Following the completion of his Ph.D., Duduta joined the faculty of the Department of Mechanical and Industrial Engineering at the University of Toronto as an assistant professor.  He is a recipient of the Banting Foundation Discovery Award for 2022 for his research on “Smart Micro-catheters Based on Electro-mechanical Artificial Muscles.”

At the heart of his research “Mishu” (as Duduta prefers to be called) is focused on the science of soft robotics, novel materials, and energy storage.  He seeks to “invent new ways to store energy and deliver power that bring new robotic capabilities.”

IMS News reached out to Dr. Duduta to welcome him and learn more about him and his research.

Your research focus includes novel materials, soft robotics, and energy storage.  All of these are at the cutting edge of future technology.  What led you to pursue this field of science?

I have always been fascinated by energy, and by materials that can act as transducers, effectively transforming one type of energy into another, for example chemical energy stored in covalent bonds of a fuel, to thermal energy, or heat by burning said fuel. I see Robotics as the next area of innovation for energy storage, conversion and harvesting.

You have said that in order for robots to interact more closely with people they must be more compliant, or flexible.  How can the combination of materials, soft robotics, and energy storage achieve this goal and what do you see as the future implications as the science advances?

As machines become smaller or softer, we’ll need to invent new materials and mechanisms for actuation, sensing and computation. The end goal is to replicate nature as closely as possible, in an engineered system. If we have artificial muscles that can effectively replace natural ones, and run as efficiently for long periods of time, we can radically change almost all segments of the economy: from healthcare, to agriculture, manufacturing and beyond.

We are happy to welcome you to UConn IMS.  How did you become interested in UConn and how will you contribute to student success, a key priority for the University?

UConn has a great location, outstanding students, talented faculty, and fantastic infrastructure.  My goal is to train students to be more capable scientists and engineers, but also to develop a strong grasp of how to communicate science effectively, as well as gain an understanding of where their work can bring societal value.

Menka Jain is Co-organizer of 28th IWOE

Menka Jain
Dr. Menka Jain

The International Workshop on Oxide Electronics (IWOE) series has become an important venue to discuss recent advances and emerging trends in this developing field. The aim of the workshop is to provide an interdisciplinary forum for researchers – theorists as well as experimentalists – on understanding the fundamental electronic and structural properties and also on the design, synthesis, processing, characterization, and applications of (epitaxial) functional oxide materials.

Associate Professor of Physics and Institute of Materials Science (IMS) faculty member Menka Jain is co-organizer of the 28th International IWOE LogoWorkshop on Oxide Electronics (IWOE) to be held October 2-5 in Portland, Maine.  Dr. Jain serves on the program committee with Ryan Comes of Auburn University, Charles H. Ahn of Yale University, and Divine Kumah of North Carolina State University.  She is also the designer of the logo for the workshop (pictured).

The workshop will showcase results of critical scientific importance as well as studies revealing the technological potential of functional oxide thin films to create devices with enhanced performance.  Full abstract book of the talks and posters can be found at https://iwoe28.events.yale.edu/sites/default/files/files/Abstract%20book_draft.pdf.

Challa Kumar to Give Writing in Science Workshop at BITS

Challa V. Kumar
Dr. Challa V. Kumar

IMS faculty member Challa Vijaya Kumar will give the Writing in Science and Engineering Workshop at Birla Institute of Technology and Science (BITS).  253 Ph.D. students from various departments around the four  campuses of BITS have enrolled in the 4-day 12-hour workshop which will be held live with virtual attendance available.

Dr. Kumar is currently serving as a Fulbright-Nehru Distinguished Chair and has embarked on a series of seminars across India.  Awards in the Fulbright Distinguished Chairs Program are viewed as among the most prestigious appointments in the Fulbright Scholar Program.

In addition to the upcoming Writing in Science and Engineering workshop, Kumar has presented seminars at the Indian Institutes of Science Education and Research (IISER) Tirupati and Osmania University where he was presented with a certificate of appreciation for his support in organizing the “Current Trends and Futuristic Challenges in Chemistry” seminar in July.