Materials Science and Engineering

UConn Signs Contract With Air Force Research Laboratory

from the Department of Materials Science and Engineering

A robotic welding arms in operation.
A robotic welding arms in operation.

UConn recently received $10.5 million from the Air Force Research Laboratory (AFRL) for research on high-temperature materials and manufacturing processes. The funding will allow a team of seven faculty members from Materials Science and Engineering (Professors Aindow, Alpay, Frame, and Hebert), Civil and Environmental Engineering (Professor Kim), Mechanical Engineering (Professor Bilal), and Chemistry (Professor Suib) along with post-doctoral associates and graduate assistants to address challenges in the manufacturing of aerial systems intended to fly at high speed. Much of the four-year research project will focus on welding-related challenges for high-temperature metallic materials that are used for structures exposed to high speeds. The UConn team will combine experimental and theoretical approaches to help their collaborator, RTX, advance their manufacturing solutions. Additional project tasks address the behavior of non-metallic high-temperature materials under different processing and service conditions, additive manufacturing of high-temperature refractory metals, and the design and processing of metamaterials. These metamaterials are designed to change heat- and electro-magnetic fields in and around structures and are considered to advance the thermal management of high-temperature structures.

The new AFRL project comes at the heels of previous and ongoing AFRL projects for UConn approaching $30 million that involve over 15 faculty members from the Colleges of Engineering and Liberal Arts and Sciences with dozens of graduate students and post-doctoral associates. Covering research from functional materials and photonics to casting, welding, and additive manufacturing, the UConn team has established itself as a valuable partner for the AFRL and key industry partners, for example, Pratt & Whitney and Collins Aerospace.

Professor Rainer Hebert says of the contract, “The AFRL funding enables the UConn team to pursue materials processing research with a strong focus on industry and government relevance. Students and post-doctoral associates working on the project see firsthand how their research translates to industry. This insight will help in preparing a workforce that can pursue research excellence with a keen sense of the needs and constraints of industrial applications.”

The World’s Smallest Basketball, from the Basketball Capital of the World

worlds tiniest basketball
Besides basketball and logos, the technology is used by Huey’s group for their pioneering Tomographic AFM work, studying future semiconductors, solar cells, metal alloys, and electromagnetic sensors—all with unprecedented nano-volumetric resolution.

While the UConn basketball team moves forward into March Madness, another team of Huskies is hard at work for the love of the game. 

One UConn College of Engineering department’s March Madness bracket includes creating the world’s smallest basketball. 

Researchers from the materials science and engineering department, housed in the new Science 1 building, has produced a basketball and Husky logo with the best-depth-resolution nanolithography in the world.  

“After we determined that our new technique worked, we wanted to do an eye-catching school spirit-related project,” says department head Bryan Huey. “A basketball and the Husky logo seemed to be a perfect way to celebrate UConn. It was fun watching our project gradually (and microscopically) take shape, and we couldn’t be more pleased with the results!”

The pictures were “carved” into a crystalline substrate. Laterally, the patterns are about 4-5 um. For comparison, a human hair is roughly 50 um. And the depth of the engraving is only 5 nm, which is another 1000x smaller than the width. Hence, the world’s smallest basketball was chiseled here in Storrs. 

Read the full story at UConn Today

Xueju “Sophie” Wang Receives 2024 ONR Young Investigator Award

Xueju "Sophie" Wang
Dr. Xueju “Sophie” Wamg

Xueju “Sophie” Wang has been awarded an Office of Naval Research (ONR) 2024 Young Investigator Award in the category Ocean Battlespace Sensing.  The Ocean Battlespace Sensing Department of ONR explores science and technology in the areas of oceanographic and meteorological observations, modeling, and prediction in the battlespace environment; submarine detection and classification (anti-submarine warfare); and mine warfare applications for detecting and neutralizing mines in both the ocean and littoral environment.

One of 24 recipients in various categories, Dr. Wang’s research, entitled A Soft Intelligent Robot for Self-digging, Multi-modal Sensing, and In Situ Marine Sediment Analysis, was recognized by the Littoral Geosciences and subcategory.  The Littoral Geosciences and Optics program supports basic and applied research for expeditionary warfare, naval special warfare, mine warfare and antisubmarine warfare in shelf, near-shore, estuarine, riverine, and riparian environments, with a particular emphasis on robust 4D prediction of environmental characteristics in denied, distant or remote environments.

Dr. Wang earned a Ph.D. from Georgia Institute of Technology in 2016.  She joined the faculty of the Materials Science and Engineering Department (MSE) in 2020 with an appointment in the Institute of Materials Science (IMS).  Since then, she has earned extensive recognition for her research including the National Science Foundation (NSF) CAREER award in 2022; the National Institutes of Health (NIH) Trailblazer Award, also in 2022; and the American Society of Mechanical Engineers (ASME) Orr Early Career Award in 2021 among others.

Wang’s research focuses on soft, stimuli-responsive materials and multifunctional structures; multistability of reconfigurable, magnetically responsive structures, flexible/pressure-tolerant/bio-integrated electronics, soft robotics and intelligent systems; and in-situ/environmental operando experimental techniques.  Her research has been published extensively.

 

MSE Welcomes Alexander Dupuy to the Department

From the Department of Materials Science & Engineering

Dr. Alexander Dupuy
Dr. Alexander Dupuy

We are excited to welcome our newest faculty member, Alexander Dupuy, who joins our department as an assistant professor this fall with an appointment to the Institute of Materials Science (IMS).

Having received his Ph.D. in mechanical engineering from the University of California, Riverside in 2016, Dupuy went on to work for the University of California, Irvine as a postdoctoral scholar and then as assistant project scientist before joining us here at UConn.

With 16 years of research experience in ceramic processing and synthesis, particularly using Spark Plasma Sintering (SPS), Dupuy makes for an exciting addition to the department. His research interests include materials related to electrifications (such as energy generation, storage/batteries, delivery, and conversion), materials for high temperature and extreme environments, and the processing, properties, and behavior of high entropy ceramics.

Dupuy previously authored 23 scientific publications. He also has significant mentorship experience, guiding 7 Ph.D. students, 11 undergraduate researchers, and 5 senior design students in their work over the past 13 years.

“I am thrilled to become a Husky,” Dupuy tells us. “The MSE department, School of Engineering, and Institute of Materials Science have made UConn a world-renowned institution for materials science scholarship and innovation. I am so pleased to be joining UConn and contributing to its important teaching and research missions.”

Pamir Alpay Appointed Vice President for Research, Innovation, and Entrepreneurship

From UConn Today

In a letter to the UConn community, President Radenka Maric recently announced the appointment of Dr. S. Pamir Alpay as Vice President for Research, Innovation, and Entrepreneurship:

Dr. S. Pamir Alpay
Dr. S. Pamir Alpay has been named Vice President for Research, Innovation, and Entrepreneurship

Pamir has very successfully served in this role on an interim basis since February 2022, overseeing the University’s $320 million research enterprise at Storrs, UConn Health, the School of Law, and our regional campuses.

He previously served as executive director of the Innovation Partnership Building at UConn Tech Park beginning in 2017, where he was the university’s chief advocate for industry-informed research and primary liaison between the research community and government partners.

Those of us who have been fortunate enough to work closely with Pamir have been continually impressed by his visionary nature, tenacity, and exceptional effectiveness as a leader and researcher. Among his greatest strengths is his ability to successfully build highly productive relationships not only with colleagues but also numerous critical partners who are external to UConn.

Pamir arrived at UConn in 2001 as an assistant professor of materials science and engineering and physics and rose through the ranks, ultimately being named Board of Trustees Distinguished Professor in 2020. He served as head of the Department of Materials Science and Engineering from 2013-17 and as associate dean for research and industrial partnerships for the UConn School of Engineering from 2019 to 2022.

Pamir’s research is at the intersection of materials science, condensed matter physics, and surface chemistry. He has over 200 peer-reviewed journal publications and conference proceedings, five invited book chapters, and a book on the physics of functionally graded smart materials. On the strength of his scholarship and service, he was elected fellow of the American Physical Society, ASM International, and the American Ceramic Society. He is also an elected member of the Connecticut Academy of Science & Engineering (CASE).

He has raised more than $30 million for research and development from federal and state agencies and industry. He is the PI of an $18 million interdisciplinary Air Force Research Lab (AFRL) contract dedicated to optimization of high value-added manufacturing technologies for aerospace components. Working with Yale University, he recently led a statewide coalition to secure an NSF Regional Innovations Engine Development Award, “Advancing Quantum Technologies (CT),” allowing Connecticut to participate in NSF’s new flagship program promoting equitable economic development through technology innovation.

As executive director of the UConn Tech Park, Pamir established partnerships with industry, state government, and federal agencies and built several interdisciplinary research teams that successfully competed for large-scale funding. Since 2017, industry partners have invested more than $285 million for applied research at the Tech Park, corresponding to over $50 million per year in research and development funding. Pamir also established partnerships with small to medium-sized regional businesses as part of core outreach efforts, critical to UConn’s mission of supporting economic growth in the state.

He earned his B.S. and M.S. from Middle East Technical University in Ankara, Turkey, and his Ph.D. from the University of Maryland.

I am grateful to the strong pool of internal candidates who applied for this position. I also want to thank the deans, members of the University Senate, and others who met with the candidates. I have tremendous confidence in the ability of our faculty to bring the university to the next level. Aiding that effort is the fact that after many years the state’s unpaid legacy costs have been removed from our budget, allowing our faculty to be even more competitive.

Pamir has a strong, proven record of fostering an atmosphere of creativity and discovery that advances knowledge and innovation. His support for campus-wide research operations, deep understanding of national research funding infrastructure and processes, collaboration with industry, and commitment to building UConn’s academic and research enterprise will serve the university very well as we strive to become a top 20 public research institution. In order to reach that goal, Pamir and his team will work closely with our deans and faculty to support the development of complex proposals and nurture critical research partnerships and alliances.

Finally, I would also like to thank the members of the search committee:

Sandra Chafouleas, Search Chair, BOT Distinguished Professor
Inge-Marie Eigsti, Professor, Psychological Sciences
David Embrick, Director and Associate Professor, Sociology and Africana Studies
Xiuchun (Cindy) Tian, Department Head and Professor, Animal Science
Annemarie Seifert, Director, Avery Point Campus
Ali Tamayol, Associate Professor, Biomedical Engineering
Justin Radolf, Director and Professor, Department of Medicine
Maryann Markowski, Executive Assistant to Chief of Staff, Office of President

Pamir is a vital leader at UConn and is playing an extremely important role in charting the future course of our university, not only in his senior administrative and research roles, but also as the co-chair of the university’s 2023 Strategic Planning Committee, which will guide the continued growth and success of this institution in the years ahead.

IMS Industrial Affiliates Program Hosts 2023 Annual Meeting

2023 Annual Meeting - Morning Session
The morning session was held in the Science 1 Active Learning Classroom.

On May 25, 2023, the Institute of Materials Science (IMS) Industrial Affiliates Program (IAP) held its first in-person annual meeting since the onset of the COVID-19 pandemic in 2020.

The meeting began with a welcome message by Dr. Hatice Bodugoz-Senturk, Associate Director of the IMS Industrial Affiliates Program, followed by remarks by Dr. Steven L. Suib, Director of IMS, and Dr. Paul Nahass, Director of the IMS Industrial Affiliates Program. Dr. Bryan Huey, Department Head of Materials Science and Engineering (MSE) gave an overview of the MSE department and its achievements; and Dr. Kelly Burke, Director of the IMS Polymer Program, discussed the latest developments in polymer science.

Dr. George Matheou presents
Dr. Georgios Matheou presents his research at the morning session of the 2003 Annual Meeting

The morning session featured three presentations by IMS faculty members from different departments. Dr. James “Nate” Hohman, Assistant Professor of Chemistry, talked about his research on experimental foundations for next-generation materials and interfaces, and how he uses big science, big data, and big AI to discover new materials for various applications. Dr. Georgios Matheou, Assistant Professor of Mechanical Engineering, presented his work on predictive modeling and simulation of multi-physics flows, and how he collaborates with industry partners in renewable energy, aerospace, and health care sectors. Dr. Vahid Morovati, Assistant Professor of Civil and Environmental Engineering, explained his theoretical framework to model the long-term mechanical behavior of elastomeric materials considering damage accumulation and degradation.

The luncheon session featured a keynote address by Dr. Anne D’Alleva, Provost and Executive Vice President for Academic Affairs, who shared her vision and goals for UConn’s academic excellence and innovation. She also highlighted the importance and impact of materials science and engineering in addressing the global challenges and opportunities in the 21st century. The luncheon concluded with closing remarks by Dr. Paul Nahass.

2023 Annual Meeting Luncheon 2
IMS Director Dr. Steven L. Suib addresses industry partners, faculty, and students at the 2023 Annual Meeting Luncheon

The meeting was attended by more than 100 participants from industry affiliates and external partners along with IMS faculty, students, and alumni. The meeting also showcased the annual Joint Poster Session by IMS Polymer Program and Materials Science and Engineering (MSE) students, demonstrating their projects and achievements in materials science and engineering.  Industry partners were also given tours of core laboratories in the Science 1 building, the new home to IMS.

The IMS Industrial Affiliates Program provides materials characterization services to its industry partners. The program also facilitates collaborations between IMS faculty and students and industry partners on research projects of mutual interest.

The Institute of Materials Science is an interdisciplinary research institution that supports over 100 faculty members from 15 departments across UConn’s schools and colleges. The institute offers advanced degrees in polymer science and materials science, as well as state-of-the-art research facilities for its students and faculty to conduct research that is changing the future of materials science.

Elyse Schriber Named NSF Graduate Research Fellow

ElyseElyse Schriber Schriber, a second-year materials science graduate student in the lab of assistant professor of chemistry J. Nathan “Nate” Hohman, was named among five UConn students to receive the prestigious National Science Foundation Graduate Research Fellowship (NSF GRFP).

Elyse began working with Hohman as an undergraduate research assistant in 2017, when he was a staff scientist at the Molecular Foundry at Lawrence Berkeley National Lab before coming to UConn.

She started working on method development for serial femtosecond chemical crystallography (SFCX) at an X-ray free electron laser (XFEL) facility in 2018. This is an X-ray crystallography technique that determines single crystal structures of materials from microcrystalline powders. She continues that work at UConn currently. The duo recently published their first paper on the method in Nature.

She plans to continue to work on different facets of the SFCX project in her graduate program, including studying ultrafast nonequilibrium excited state structural dynamics in materials.

“I started my undergraduate degree as a nontraditional student at the local community college and as a result, did not have a straightforward pathway into graduate school or academia,” says Schriber. “Being awarded the GRFP, especially with my background, makes me hopeful that more students with similar experiences can be empowered to believe that they can be successful, regardless of how they got their start.”  Read the full UConn Today Story

MSE PhD Candidate Encourages Other Female Researchers to Not Doubt Their Own Voices

As of 2021, female PhD researchers like Suman Kumari are welcoming the challenge of pursuing a passion in a still male-majority field. Though representation has improved compared to decades ago, the imbalance in a classroom or lab can still be intimidating. According to Kumari, though it hasn’t been easy being a female in her discipline, this shouldn’t dissuade others from pursuing materials science and engineering.

“Though the world is changing, it’s challenging as a female in the materials science and engineering field, but nothing is impossible if you have the will to do it. I would say, ‘listen to yourself, you know what you want to do,” she says.

In much of her career so far, Kumari has not let any hesitation stop her.

Read the full story from the Department of Materials Science and Engineering

Xueju “Sophie” Wang Receives NSF CAREER Award

Xueju "Sophie" WangMSE Assistant Professor Xueju “Sophie” Wang has been awarded the NSF Faculty Early Development Program CAREER Award for her proposal entitled “Mechanics of Active Polymers and Morphing structures: Determine the Role of Molecular Interactions and Stiffness Heterogeneity in Reversible Shape Morphing.” It is one of NSF’s most prestigious awards.

Wang’s NSF CAREER award will support her research on fundamental studies of the mechanics of innovative active polymers and morphing structures. Soft active polymers that can change their shapes and therefore functionalities upon exposure to external stimuli are promising for many applications, including soft robotics, artificial muscles and tissue repair. This research project aims to establish the missing correlations across the molecular, material and structural levels of novel active polymers for their rational design, manufacturing and applications, by using liquid crystal elastomers as a model material system.

“I am very grateful and honored to receive this prestigious award, and I look forward to working with my students to address challenges in innovative active polymers and to apply them in emerging fields like soft robotics,” Wang said.

Read the full Department of Materials Science and Engineering Story

MSE Students’ Fluxtrol Research Makes Semifinals at National Heat Treat Society Conference

MSE Group Poster Wins
Dean’s group in front of their project at the Heat Treat Society Conference. From left to right: Ryan Gordon, Cole Accord, and Quenten Dean.

Two MSE students made it to semi-finals at the 31st Heat Treat Contest which took place Sept. 14 and 15 in St. Louis. This year, the student/emerging professional portion of the conference hosted the Fluxtrol Student Competition and the new ASM Heat Treating Society Strong Bar Student Competition.

The talented group of rising materials engineers from UConn consisted of three undergraduate students, three graduate students, and one recent graduate.

The Heat Treating Society as a whole serves professional and aspiring material engineers who work in thermal processing. The annual competition offers awards and widespread recognition to young innovative scientists. Through this, the program seeks to encourage the participation of younger generations in the ASM Heat Treating Society. It also provides a pipeline to worldwide opportunities in the thermal processing community.

Recent MSE graduate Brittany Nelson and MSE senior Ryan Gordon were the two participants from UConn who made it to the semi-final round of the Fluxtrol Student Research Contest. “Unfortunately, they did not make it to the final winner slot, but everyone did a great job and they had some steep competition,” their faculty advisor, MSE Assistant Professor Lesley Frame, says. Frame currently serves as the first female Vice President of the Heat Treat Society.  Read the full MSE Story.