UConn Materials Science and Engineering

MSE Graduate Student’s Mission: Advance Latino Recruitment, Participation in STEM

Ph.D. Student Luis Ortiz
MSE Ph.D. student, Luis Ortiz

Ph.D. student Luis Ortiz’s passion for materials science was ignited during his undergraduate years at the Universidad de Puerto Rico – Humacao, where he was involved in research focused on physics applied to electronics. He revealed, “In my Applied Physics department in Puerto Rico, we have a program mainly focused on materials research. Based on my experience there, I fell in love with the material science field and decided to pursue my graduate studies in this area.”

Ortiz became exposed to the UConn MSE program through various fellowships he applied to throughout his undergraduate years. He revealed, “We didn’t have much information about UConn in Puerto Rico. As a minority student, I decided to apply for fellowship opportunities that could help me succeed in graduate school at universities in the USA. I also applied to this specific program called the Bridge to the Doctorate Louis Stokes Alliance for Minority Participation while I was an undergraduate student. This is a two-year fellowship that helps you bridge between undergraduate and graduate school, and they supported me through the start of my Ph.D. They have a network of universities inside the program, and UConn was one of the listed colleges.”

During the two-year fellowship, Ortiz was introduced to Professor Bryan Huey, who currently heads the MSE department and serves as his advisor. Luis admits feeling supported by Professor Huey and the other department faculty members. He remarked, “Many people here are willing to mentor students and see us become better professionals. My advisor has been one of them.” Ortiz acknowledged the support he receives from MSE faculty members to pursue his dreams and their confidence in his ability to achieve them. “I feel supported and validated in terms of how we pursue our path and work to achieve our goals,” he said.

Read the full MSE story

Xueju “Sophie” Wang Receives 2024 ONR Young Investigator Award

Xueju "Sophie" Wang
Dr. Xueju “Sophie” Wamg

Xueju “Sophie” Wang has been awarded an Office of Naval Research (ONR) 2024 Young Investigator Award in the category Ocean Battlespace Sensing.  The Ocean Battlespace Sensing Department of ONR explores science and technology in the areas of oceanographic and meteorological observations, modeling, and prediction in the battlespace environment; submarine detection and classification (anti-submarine warfare); and mine warfare applications for detecting and neutralizing mines in both the ocean and littoral environment.

One of 24 recipients in various categories, Dr. Wang’s research, entitled A Soft Intelligent Robot for Self-digging, Multi-modal Sensing, and In Situ Marine Sediment Analysis, was recognized by the Littoral Geosciences and subcategory.  The Littoral Geosciences and Optics program supports basic and applied research for expeditionary warfare, naval special warfare, mine warfare and antisubmarine warfare in shelf, near-shore, estuarine, riverine, and riparian environments, with a particular emphasis on robust 4D prediction of environmental characteristics in denied, distant or remote environments.

Dr. Wang earned a Ph.D. from Georgia Institute of Technology in 2016.  She joined the faculty of the Materials Science and Engineering Department (MSE) in 2020 with an appointment in the Institute of Materials Science (IMS).  Since then, she has earned extensive recognition for her research including the National Science Foundation (NSF) CAREER award in 2022; the National Institutes of Health (NIH) Trailblazer Award, also in 2022; and the American Society of Mechanical Engineers (ASME) Orr Early Career Award in 2021 among others.

Wang’s research focuses on soft, stimuli-responsive materials and multifunctional structures; multistability of reconfigurable, magnetically responsive structures, flexible/pressure-tolerant/bio-integrated electronics, soft robotics and intelligent systems; and in-situ/environmental operando experimental techniques.  Her research has been published extensively.