Faculty Honors

Challa Kumar to Give Writing in Science Workshop at BITS

Challa V. Kumar
Dr. Challa V. Kumar

IMS faculty member Challa Vijaya Kumar will give the Writing in Science and Engineering Workshop at Birla Institute of Technology and Science (BITS).  253 Ph.D. students from various departments around the four  campuses of BITS have enrolled in the 4-day 12-hour workshop which will be held live with virtual attendance available.

Dr. Kumar is currently serving as a Fulbright-Nehru Distinguished Chair and has embarked on a series of seminars across India.  Awards in the Fulbright Distinguished Chairs Program are viewed as among the most prestigious appointments in the Fulbright Scholar Program.

In addition to the upcoming Writing in Science and Engineering workshop, Kumar has presented seminars at the Indian Institutes of Science Education and Research (IISER) Tirupati and Osmania University where he was presented with a certificate of appreciation for his support in organizing the “Current Trends and Futuristic Challenges in Chemistry” seminar in July.

Designing a Lighter, Denser Fuel Cell

from UConn Today

Fuel Cells
Fuel cells are a promising direction for cleaner energy, and a team of UConn researchers is working to improve their design (Adobe Stock).

Fuel cell technology is continuously evolving as renewable energy and alternate energy sources become an increasingly important means of reducing global dependence on fossil fuels. Planar fuel cells, a prevalent design, can be bulky, have compression issues, and uneven current distribution. Other drawbacks include problems with reactant gas transport, excess water removal, and fabrication challenges associated with their design.

A team of UConn researchers led by Jasna Jankovic, an assistant professor in the Department of Materials Science and Engineering in the School of Engineering, has devised a novel design for a tubular polymer electrolyte membrane (PEM) fuel cell that addresses those shortcomings and improves on existing tubular PEM fuel cell designs, most of which take a planar PEM fuel cell and curl it into a cylinder.

Jankovic and two grad students, Sara Pedram and Sean Small, took a more holistic approach that rethinks tubular fuel cell design from the ground up. Their disruptive, patent-pending concept could potentially have nearly twice the energy density of other tubular PEM fuel cells, be 50 percent lighter, have a replaceable inner electrode and electrolyte (if liquid), a leak-proof configuration, and require fewer precious metals.

That’s a big deal, says Michael Invernale, a senior licensing manager at UConn’s Technology Commercialization Services (TCS) working with Jankovic to bring the concept to market. Much of the effort to improve fuel cell design, he says, has focused on the end user instead of the greater good.

“A fuel cell with refillable components is a kind of solution that does that,” says Invernale.  “An airline relying on this technology would have more incentive to rebuild a component. Right now, it might be cheaper to replace the whole unit. That’s really where this design shines. The features of the design are green and sustainable and renewable.”

Fuel cells are essentially refuelable electrochemical power generation devices that combine hydrogen and oxygen to generate electricity, heat, and water. Each type is classified primarily by the kind of electrolyte it uses. Planar fuel cells are constructed using sandwich-like stacks of large, rectangular flow field plates made of graphite or metal, which account for about 80 percent of their weight and 40 percent of their cost. UConn’s design uses a single tube-shaped flow field that reduces its weight by half.

Jasna Jankovic
Dr. Jasna Jankovic

The concept is still in discovery and has I-Corps and Partnership for Innovation (PFI) funding from the National Science Foundation (NSF). The program was created to spur the translation of fundamental research to the marketplace, encourage collaboration between academia and industry, and train NSF-funded faculty, students, and other researchers in innovation and entrepreneurship skills.

Participating research teams have the opportunity to interview potential customers to learn more about their needs. Jankovic and her team conducted some 60 interviews during a UConn Accelerator program in early 2022 that helped them size up the market and answer important questions about whether or not to start a longer process, make the product themselves, or license the technology to another company.

“It was very useful to get feedback and guidance from people in industry” Jankovic says.

Jankovic led the team as PI, with Pedram and Small, acting as Entrepreneurial Lead and Co-Lead respectively. Lenard Bonville, the team’s industrial mentor, will support the team with his decades of industrial experience. The team will conduct another set of 100 interviews with industry to discover the market for their product and get guidance on its final design. NSF-Partnership for Innovation (PFI) funding will then be used to develop a prototype and pursue commercialization.

Fuel cells have a wide range of applications, from powering  homes and businesses, to keeping critical facilities like hospitals, grocery stores, and data centers up and running, and moving a variety of vehicles, including cars, buses, trucks, forklifts, trains, and more. Jankovic’s team is working toward obtaining a full patent on their design and thoroughly testing the concept. In the short term, they are focused on commercializing the technology and attracting potential partners.

Jankovic envisions creating a fuel cell roughly the size of a AA battery however, as a scalable and modular technology, it could be scaled-up to any practical size. The cylindrical shape would allow for more fuel cells to occupy the same amount of space as those in use now and be cheaper to manufacture, Invernale said. Jankovic views her fuel cell design as a replacement for Lithium-Ion batteries.

Jankovic said her seven years in industry before coming to UConn convinced her there was a need in the market for a new and better fuel cell design.

“From that experience, I knew that planar fuel cells had a few issues,” she says. “I kept asking around, and I said, ‘let’s do it and find out yes or no.”

Department of Energy Early Career Award Recipient Yuanyuan Zhu

Yuanyuan Zhu
Dr. Yuanyuan Zhu is the only Connecticut recipient of the DOE Early Career Award for 2022.

Established in 2010, the DOE Office of Science Early Career Research Program supports the individual research programs of outstanding scientists early in their careers and stimulates research careers in the disciplines supported by the DOE Office of Science: Advanced Scientific Computing Research (ASCR), Biological and Environmental Research (BER), Basic Energy Sciences (BES), Fusion Energy Sciences (FES), High Energy Physics (HEP), Isotope R&D and Production (IP), and Nuclear Physics (NP).

Among the 83 university and DOE national lab researchers announced as recipients of the award for 2022, Assistant Professor of Materials Science and Engineering Yuanyuan Zhu is the only Connecticut researcher to receive the honor.  IMS News asked Dr. Zhu about her research and the award.

In 2019, you were appointed Director of the UConn DENSsolutions InToEM Center for in-situ TEM research at IPB Tech Park.  You have since had papers published related to the research the Center is conducting.  As we are seeing more and more evidence of the effects of climate change, how do you hope your research at the InToEM Center will assist in solving some of the problems we are now dealing with?

Yes, we have published a couple of papers since 2019 using the in-situ environmental TEM gas cell. Here you can find our full publications: https://scholar.google.com/citations?hl=en&user=HlDqamcAAAAJ&view_op=list_works&sortby=pubdate .

It’s a coincidence that the DENSsolutions’ ETEM gas cell system is named as “Climate”, because it involves gas environment for chemical reactions in a microscope. Another example is their liquid cell system, which is called “Stream” simply because the reaction stimuli involved.

There are many materials researches related to energy and environment, including climate change, that can benefit from the in-situ ETEM research. One immediate example is heterogeneous catalysis used for natural gas conversion and H2 production. And the fusion energy materials research funded by the DOE ECA is another good example.

Congratulations on receiving the Department of Energy’s Early Career Award for 2022.  What are your hopes for your research on Understanding Thermal Oxidation of Tungsten and the Impact to Radiation Under Fusion Extremes?

Fusion energy holds great promise for replacing fossil fuels for 24/7 baseload electrical power. We are excited that the DOE Early Career Award will fund our in-situ ETEM study to directly address a well-known fusion safety hazard concerning aggressive high-temperature oxidation of plasma-facing material tungsten. We hope to gain fundamental understanding of tungsten degradation in case of air-ingress scenarios that could inform the best strategy for responding to accidents, and could guide the design of advanced W-based materials that better preserve divertor integrity for even more demanding DEMO fusion extremes. Simply put it, we want to make the operation of fusion energy systems safer and more reliable.

You have several Ph.D. candidates under your advisement.  How do you hope to influence these young scientists?

Our research group provides a welcoming, supportive and inclusive working environment to drive personal success for each Ph.D. researcher. Through the first-hand work on such research projects closely to clean energy and sustainability, I believe our Ph.D. students will gain confidence and skills in research and also develop a solid sense of social responsibility.

We are seeing many more women represented in STEM.  What advice would you give to young women who may be considering a career in science, technology, engineering and mathematics?

We need everyone in STEM, and anything is possible if one follows his/her/their passion. Research is fun but progress is built on failure and resilience.

 

Cato T. Laurencin Named 2023 Priestley Medalist

from UConn Today

Dr. Cato Laurencin
Scientist and engineer, Dr. Cato T. Laurencin, has been honored for seminal and lasting research benefiting humankind.

Cato T. Laurencin, the University Professor and Albert and Wilda Van Dusen Distinguished Endowed Professor at the University of Connecticut will receive the 2023 Priestley Medal, the highest honor of the American Chemical Society.

He is recognized as the leading international figure in polymeric biomaterials chemistry and engineering who has made extraordinary scientific contributions, while at the same time he has had profound contributions to improving human health through the results of his work. While trained in polymeric chemistry, Laurencin’s overall training is broad and interdisciplinary. He received his B.S.E. in Chemical Engineering from Princeton University. He received his Ph.D. in Biochemical Engineering/Biotechnology from the Massachusetts Institute of Technology and simultaneously received his M.D., Magna Cum Laude from the Harvard Medical School. He then joined the faculty of the Massachusetts Institute of Technology and opened a polymer chemistry research laboratory. At the same time he trained and became a board certified orthopaedic surgeon.

Dr. Laurencin produced seminal work on polymeric nanofiber chemistry technology for biomedical purposes, heralding the new field. He pioneered the understanding and development of polymer-ceramic systems for bone regeneration for which the American Institute of Chemical Engineers named him one of the 100 engineers of the modern era at its Centennial celebration. In a three decade collaboration with Professor Harry Allcock at Penn State, Laurencin worked in the development of polyphosphazenes for biomedical purposes. Dr. Laurencin has had breakthrough achievements in the areas of materials chemistry and engineering of soft tissue implants for regeneration of tissue including the development of the Laurencin-Cooper (LC) Ligament for anterior cruciate ligament regeneration (knee). The development of the LC Ligament was highlighted by National Geographic Magazine in its “100 Discoveries that Changed the World” edition.

In his latest work, Dr. Laurencin has pioneered a new field, Regenerative Engineering, described as the Convergence of areas such as nanomaterials science and chemistry. His work has described the chemistry of signaling molecules for tissue regeneration and he published this work in Plos One (https://doi.org/10.1371/journal.pone.01016272014). He demonstrated the ability these molecules in combination with polymeric materials chemistry to induce tissue regeneration.  In his most recent work he has used principles of polymer chemistry to create cell-like structures. This has allowed the creation of what is being considered a new class of stem cells: synthetic artificial stem cells (SASC). The work was recently published in the Proceedings of the National Academy of Sciences.

The impact of the new field has become clear. The NIH Awarded him their highest and most prestigious award, the NIH Director’s Pioneer Award for his field of Regenerative Engineering. The NSF awarded him their most transformative grant, the Emerging Frontiers in Research and Innovation Grant (EFRI) for Regenerative Engineering. Dr. Laurencin is the Editor-in-Chief of Regenerative Engineering and Translational Medicine, a journal published by Springer Nature. He is the Founder of the Regenerative Engineering Society (now a community of the American Institute of Chemical Engineers). The American Institute of Chemical Engineers Foundation created and endowed the Cato T. Laurencin Regenerative Engineering Founder’s Award honoring Dr. Laurencin’s work and legacy in this new field. He is the first individual to receive highest distinctions across science, engineering, medicine and technology for this work. In science, he received the Philip Hauge Abelson Prize from the American Association for the Advancement of Science awarded “for signal contributions to the advancement of science in the United States”.  He was awarded both the highest/oldest honor of the National Academy of Engineering (the Simon Ramo Founders Award) and one of highest/oldest honors of the National Academy of Medicine (the Walsh McDermott Prize). And he received the National Medal of Technology and Innovation, our nation’s highest for technological achievement in ceremonies at the White House.  Most recently, he received the 2021 Spingarn Medal given for the “highest or noblest achievement by a living African American during the preceding year or years in any honorable field.”  The highest award of the NAACP, they stated “his exceptional career has made him the foremost engineer-physician-scientist in the world.”

Dr. Laurencin has also profoundly contributed to mentoring and fostering diversity. He has been responsible for the development of a generation of underrepresented engineers and scientists. In receiving the American Association for the Advancement of Science Mentor Award, it was noted that the majority of African-American faculty in bioengineering had been mentored by Laurencin. For his work in mentoring, he was honored by President Barack Obama with the Presidential Award for Excellence in Science, Math and Engineering Mentoring. Remarkably, he received the 2021 Hoover Medal given jointly by the American Institute of Chemical Engineers, the American Society of Mechanical Engineers (ASME), the American Society of Civil Engineers (ASCE), the American Institute of Mining, Metallurgical and Petroleum Engineers (AIME) and the Institute of Electrical and Electronics Engineers (IEEE), The purpose of the medal is “to recognize great, unselfish, non-technical services by engineers to humanity.” Dr. Laurencin’s extraordinary commitment to inclusion, equity and fairness along with his legendary work in mentoring lead to his selection.

Dr. Laurencin’s life, career and philosophy are contained in his recently published biography entitled “Success is What You Leave Behind,” published by Elsevier.

Cato Laurencin Honored by American Orthopaedic Association

from UConn Today

Dr. Cato Laurencin
Dr. Cato T. Laurencin is now added to the AOA Award Hall of Fame (AOA Photo/Kyle Klein).

Dr. Cato T. Laurencin, University Professor at the University of Connecticut, has been honored by the American Orthopaedic Association (AOA) with its Distinguished Contributions to Orthopaedics Award adding him to its AOA Award Hall of Fame.

Laurencin, the Albert and Wilda Van Dusen Distinguished Professor of Orthopaedic Surgery at UConn School of Medicine, was selected for the special recognition by his AOA member peers for his remarkable personal achievement and contributions to orthopaedic surgery.

He accepted the award the evening of June 15 at the AOA’s Annual Leadership Meeting at the Rhode Island Convention Center in Providence. “I am so honored to accept the American Orthopaedic Association Distinguished Contributions to Orthopaedics Award and be recognized in the AOA Awards Hall of Fame. I feel so fortunate to be an orthopaedic surgeon.”

The AOA Distinguished Contributions to Orthopaedics (DCO) Award recognizes Laurencin for his personal achievement and broad contribution to the orthopaedic specialty, leadership, impact on patient care, and clinical and basic science research. The mission of the AOA is engaging the orthopaedic community to develop leaders, strategies and resources to guide the future of musculoskeletal care.

In addition to being a practicing sports medicine and shoulder surgeon consistently named to America’s Top Doctors list, Laurencin is a world-renowned surgeon-engineer-scientist and a pioneer of the field of regenerative engineering.

In fact, Laurencin is leading the first international effort ever for knee and limb engineering with his Hartford Engineering a Limb (HEAL) project which aims at regenerating a human limb by 2030. The National Institutes of Health and the National Science Foundation currently fund this research work through Laurencin’s large grant awards including the NIH Director’s Pioneer Grant Award and the National Science Foundation’s Emerging Frontiers in Research and Innovation Grant Award.

In orthopaedic surgery, Laurencin has been the first to win the “trifecta” of orthopaedic research lifetime awards: the Nicolas Andry Award from the Association of Bone and Joint Surgeons, the Marshall R. Urist Award from the Orthopaedic Research Society, and the Kappa Delta Award from the American Academy of Orthopaedic Surgeons.

Nationally, Laurencin is the first surgeon in history to be elected to all four national academies: the National Academy of Sciences, the National Academy of Engineering, the National Academy of Medicine, and the National Academy of Inventors. He is an elected fellow of the American Academy of Arts and Sciences and an elected fellow of the American Association for the Advancement of Science.

Laurencin is a laureate of the National Medal of Technology and Innovation, America’s highest honor for technological achievement, awarded by President Barack Obama at the White House. He is the recipient of the prestigious Spingarn Medal, the highest honor of the NAACP bestowed upon such Americans as Martin Luther King Jr., Maya Angelou, George Washington Carver, Jackie Robinson, and Duke Ellington.

At UConn Laurencin is also a professor of chemical engineering, materials science and engineering, and biomedical engineering and serves as CEO of The Connecticut Convergence Institute for Translation in Regenerative Engineering. He has received the highest honors in engineering, medicine and science, including the Philip Hauge Abelson Prize given for “signal contributions to the advancement of science in the United States.”  The American Institute of Chemical Engineers recently established the Cato T. Laurencin Regenerative Engineering Founder’s Award in honor of his breakthrough achievements in that field.

Laurencin received his BSE in chemical engineering from Princeton University, his MD, magna cum laude from the Harvard Medical School, and his Ph.D. in biochemical engineering/biotechnology from the Massachusetts Institute of Technology.

Xiuling Lu Promoted to Professor

Xiuling Lu
Professor Xiuling Lu

(from UConn Today)

IMS Faculty member Xiuling Lu has been promoted to professor in the School of Pharmacy.  She joined the School of Pharmacy as an assistant professor in 2011. She has been active in the teaching and research programs as well as contributing to the service mission of the school and university. Lu’s research program is focused on nanoparticle-based drug delivery systems for improving therapeutic effectiveness utilizing biologically compatible approaches. Since her promotion to associate professor in 2017, Lu has established strong collaborations with cross-disciplinary external researchers and garnered external grants from the National Institutes of Health (NIH), Federal Drug Administration (FDA), American Cancer Society, pharmaceutical industry and the Center for Pharmaceutical Processing Research (CPPR). Her service contribution to the school and beyond were recognized when she received the 2019 Robert L. McCarthy Faculty Service Award.

Lu has taught classes in both the professional (Pharm.D.) and graduate (Ph.D.) programs and has trained more than 30 BS, MS and Ph.D. students, as well as 12 postdoctoral scholars and visiting scientists doing research in her lab. Her overall goals are to teach and train the next generation of pharmacy professionals and pharmaceutical scientists, serve the university and broader community promoting science and education, and to utilize formulation science and platform technologies to enable effective pharmaceutical products for improving human health.

Seven IMS Faculty Members Promoted

Faculty Promotions 2022
(l-r) Drs. Yupeng Chen, Elena Dormidontova, Ali Gokirmak, Ying Li, Xiuling Lu, Thanh Nguyen, Arash Zaghi

The Office of the Provost recently announced the award of promotion and/or tenure to 69 faculty across the Storrs and regional campuses. Seven IMS faculty members were among them.

Evaluations for promotion, tenure, and reappointment apply the highest standards of professional achievement in scholarship, teaching, and service for each faculty member evaluated. Applications for promotion and tenure are reviewed at the department level, school or college level, and finally at the Office of the Provost before recommendations are forwarded to the Board of Trustees.

Newly promoted IMS faculty members include:

From the School of Engineering

Promotion to Associate Professor and Tenure

  • Ying Li, Mechanical Engineering
  • Thanh Nguyen, Mechanical Engineering

Promotion to Professor

Tenure as Associate Professor

From the College of Liberal Arts and Sciences

Promotion to Professor

From the School of Pharmacy

Promotion to Professor

  • Xiuling Lu, Pharmaceutical Sciences

IMS congratulates each of these faculty members for their excellence and dedication.

Four IMS Faculty Members Receive OVPR Scholarship Facilitation Award

Scholarship Facilitation Award Winners
(l-r) Drs. Farhad Imani, Jasna Jankovic, Tomoyasu Mani, and Luyi Sun

The Scholarship Facilitation Fund program provides up to $2,000 to UConn faculty across all disciplines. The OVPR offers the competitive awards to promote, support, and enhance research, scholarship, and creative endeavors across UConn Storrs and regional campuses.

Four IMS faculty members were among the 67 faculty named as recipient of the award for Spring 2022:

  • Farhad Imani, Mechanical Engineering
    Brain-inspired Hyperdimensional Computing for Empowering Cognitive Additive Manufacturing
  • Jasna Jankovic, Material Science and Engineering
    STEAM Tree Earth Day Celebration
  • Tomoyasu Mani, Chemistry
    Stereoselective Control of Electron Transfer Reactions
  • Luyi Sun, Chemical and Biomolecular Engineering
    Publication in PNAS, a Premium Journal for Maximum Impact

IMS Congratulates these faculty members on this accomplishment.

Four IMS Faculty Members Elected to CASE

Hebert-Kumbar-Nieh-Teschke
(l-r) Drs. Rainer Hebert, Sangamesh Kumbar, Mu-Ping Nieh, and Carolyn Teschke

The Connecticut Academy of Science and Engineering (CASE) announced the election of 35 new members for 2022 who the organization describe as leading experts in science, engineering, mathematics, medicine, and technology.  12 of those newly elected members are UConn faculty and four are faculty members of the Institute of Materials Science (IMS).

Rainer Hebert, Professor of Materials Science and Engineering; Director of Pratt & Whitney Additive Manufacturing Center, Associate Director of the Institute of Materials Science

Sangamesh G. Kumbar, Associate Professor, Orthopaedic Surgery, Biomedical Engineering Health

Mu-Ping Nieh, Professor, Dept. of Chemical and Biomolecular Engineering, UConn School of Engineering and Institute of Materials Science

Carolyn Teschke, Professor and Interim Department Head, Molecular and Cell Biology, and Chemistry

The new members will be introduced at the Academy’s 47th Annual Meeting to be held virtually on May 26, 2022.  Read the full UConn Today story